Ôn tập toán 7

BN

cho các đa thức

P(x) = x\(^2\)+ 3x + 2 - x

Q(x) = -2x\(^3\)+ 2x\(^2\)- x - 5 + 2x\(^3\)

a) Thu gọn các đa thức

b) Tính giá trị của đa thức Q(x) tại x= -1

c) Chứng minh đa thức P(x) không có nghiệm

AT
1 tháng 5 2017 lúc 10:30

a/ P(x) = x2 + 3x + 2 - x = x2 + 2x + 2

Q(x) = -2x3 + 2x2 - x - 5 + 2x3 = 2x2 - x - 5

b/ Q(-1) = 2 . (-1)2 - (-1) - 5

= 2 + 1 - 5 = -2

c/ P(x) = x2 + 2x + 2 = x2 + 2x + 1 + 1

= (x + 1)2 + 1. Dễ thấy:

(x + 1)2 \(\ge0\forall x\) => (x + 1)2 + 1 > 0

=> P(x) vô no (đpcm)

Bình luận (0)
H24
1 tháng 5 2017 lúc 10:45

a)

\(P\left(x\right)=x^2+3x+2-x\)

\(P\left(x\right)=\left(3x-x\right)+x^2+2\)

\(P\left(x\right)=2x+x^2+2\)

\(Q\left(x\right)=-2x^3+2x^2-x-5+2x^3\)

\(Q\left(x\right)=\left(-2x^3+2x^3\right)+2x^2-x-5\)

\(Q\left(x\right)=2x^2-x-5\)

b)

Tại x = -1 thì đa thức Q(x) đạt giá trị là:

\(Q\left(-1\right)=2.\left(1\right)^2-\left(-1\right)-5\)

\(Q\left(-1\right)=2.1+1-5=2+1-5=-2\)

c)

Có: \(P\left(x\right)=2x+x^2+2\)

Hay \(P\left(x\right)=x^2+2x+2\)

\(P\left(x\right)=x^2+x+x+1+1\)

\(P\left(x\right)=\left(x^2+x\right)+\left(x+1\right)+1\)

\(P\left(x\right)=x.\left(x+1\right)+1.\left(x+1\right)+1\)

\(P\left(x\right)=\left(x+1\right).\left(x+1\right)+1\)

\(P\left(x\right)=\left(x+1\right)^2+1\)

\(\left(x+1\right)^2\ge0\)

\(\Rightarrow\left(x+1\right)^2+1\ge1>0\)

Vậy đa thức P(x) không có nghiệm.

Chúc bạn học tốt!ok

Bình luận (0)

Các câu hỏi tương tự
PC
Xem chi tiết
VT
Xem chi tiết
QS
Xem chi tiết
FA
Xem chi tiết
NH
Xem chi tiết
PS
Xem chi tiết
HM
Xem chi tiết
PD
Xem chi tiết
NH
Xem chi tiết