a, Q=\(\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\left(x\ge0,x\ne4,x\ne9\right)\)
=\(\frac{2\sqrt{x}-9}{x-2\sqrt{x}-3\sqrt{x}+6}-\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}+\frac{2\sqrt{x}+1}{\sqrt{x}-3}\)
=\(\frac{2\sqrt{x}-9}{\sqrt{x}\left(\sqrt{x}-2\right)-3\left(\sqrt{x}-2\right)}-\frac{x-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}+\frac{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
= \(\frac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{x-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}+\frac{2x-4\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
=\(\frac{2\sqrt{x}-9-x+9+2x-4\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
=\(\frac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{x-2\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
=\(\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
b, Để Q<1 <=> \(\frac{\sqrt{x}+1}{\sqrt{x}-3}< 1\)
<=> \(\frac{\sqrt{x}+1}{\sqrt{x}-3}-1< 0\) <=> \(\frac{\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}-3}< 0\) <=> \(\frac{4}{\sqrt{x}-3}< 0\)
<=> \(\sqrt{x}-3< 0\) <=> \(\sqrt{x}< 3\) <=> x<9. Kết hợp vs đk => \(0\le x< 9\) và \(x\ne2\)
Vậy Q<1 <=> \(0\le x< 9\) và \(x\ne2\)
c, Có \(Q=\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)
Để Q\(\in Z\) <=> \(\frac{4}{\sqrt{x}-3}\in Z\)
Vs \(x\in Z\) => \(\left\{{}\begin{matrix}\sqrt{x}\in Z\\\sqrt{x}\notin Z\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\sqrt{x}-3\in Z\\\sqrt{x}-3\notin Z\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\frac{4}{\sqrt{x}-3}\in Z\left(tm\right)\\\frac{4}{\sqrt{x}-3}\notin Z\left(ktm\right)\end{matrix}\right.\)
=> \(\sqrt{x}-3\inƯ\left(4\right)=\left\{\pm1,\pm2,\pm4\right\}\)
<=> \(\sqrt{x}\in\left\{4,2,1,5,-1,7\right\}\)
mà \(\sqrt{x}\ge0,\sqrt{x}\ne2\)
=> \(\sqrt{x}\in\left\{1,4,5,7\right\}\)
<=> x\(\in\left\{1,16,25,49\right\}\)
Vậy x\(\in\left\{1,16,25,49\right\}\) thì Q\(\in Z\)