Chương I - Căn bậc hai. Căn bậc ba

HC

Cho biểu thức: \(P=\left(\frac{\sqrt{a}+1}{\sqrt{ab}+1}+\frac{\sqrt{ab}+\sqrt{a}}{\sqrt{ab}-1}-1\right):\left(\frac{\sqrt{a}+1}{\sqrt{ab}+1}-\frac{\sqrt{ab}+\sqrt{a}}{\sqrt{ab}-1}+1\right)\)

a) Rút gọn P. Tính giá trị của P nếu \(a=2-\sqrt{3}\)\(b=\frac{\sqrt{3}-1}{1+\sqrt{3}}\)

b) Tìm giá trị nhỏ nhất của P nếu \(\sqrt{a}+\sqrt{b}=4\)

NL
17 tháng 6 2019 lúc 10:18

ĐKXĐ:...

\(P=\left(\frac{\left(\sqrt{a}+1\right)\left(\sqrt{ab}-1\right)+\left(\sqrt{ab}+\sqrt{a}\right)\left(\sqrt{ab}+1\right)}{\left(\sqrt{ab}-1\right)\left(\sqrt{ab}+1\right)}-1\right):\left(\frac{\left(\sqrt{a}+1\right)\left(\sqrt{ab}-1\right)-\left(\sqrt{ab}+\sqrt{a}\right)\left(\sqrt{ab}+1\right)}{\left(\sqrt{ab}-1\right)\left(\sqrt{ab}+1\right)}+1\right)\)

\(=\left(\frac{2a\sqrt{b}+2\sqrt{ab}}{ab-1}\right):\left(\frac{-2\sqrt{a}-2}{ab-1}\right)=\frac{\sqrt{ab}\left(\sqrt{a}+1\right)}{\left(ab-1\right)}.\frac{\left(ab-1\right)}{-\left(\sqrt{a}+1\right)}=-\sqrt{ab}\)

\(b=\frac{\sqrt{3}-1}{\sqrt{3}+1}=\frac{\left(\sqrt{3}-1\right)^2}{2}=2-\sqrt{3}\)

\(\Rightarrow P=-\sqrt{ab}=-\sqrt{\left(2-\sqrt{3}\right)^2}=\sqrt{3}-2\)

\(\sqrt{a}+\sqrt{b}=4\Rightarrow\sqrt{b}=4-\sqrt{a}\)

\(\Rightarrow P=-\sqrt{a}\left(4-\sqrt{a}\right)=a-4\sqrt{a}=\left(\sqrt{a}-2\right)^2-4\ge-4\)

\(\Rightarrow P_{min}=-4\) khi \(\sqrt{a}-2=0\Leftrightarrow\left\{{}\begin{matrix}a=4\\b=4\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
NN
Xem chi tiết
PT
Xem chi tiết
MN
Xem chi tiết
TN
Xem chi tiết
QM
Xem chi tiết
HS
Xem chi tiết
TT
Xem chi tiết
DQ
Xem chi tiết
LL
Xem chi tiết