Chương I - Căn bậc hai. Căn bậc ba

NS

cho biểu thức P=\(\left(\dfrac{\sqrt{x}}{\sqrt{x}+2}-\dfrac{4}{x+2\sqrt{x}}\right):\left(1+\dfrac{1}{\sqrt{x}}\right)\) với x>0

1.rút gọn biểu thức P

2.tìm các soosnguyeen x thả mãn P>0

NM
8 tháng 8 2021 lúc 9:38

1. \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}+2}-\dfrac{4}{x+2\sqrt{x}}\right):\left(1+\dfrac{1}{\sqrt{x}}\right)\left(x>0\right)\)

\(P=\dfrac{x-4}{\sqrt{x}\left(\sqrt{x}+2\right)}:\dfrac{\sqrt{x}+1}{\sqrt{x}}=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}}{\sqrt{x}+1}\)

\(P=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\)

2. Để \(P>0\Leftrightarrow\dfrac{\sqrt{x}-2}{\sqrt{x}+1}>0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\sqrt{x}-2>0\\\sqrt{x}+1>0\end{matrix}\right.\\\left\{{}\begin{matrix}\sqrt{x}-2< 0\\\sqrt{x}+1< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>\sqrt{2}\\x>\sqrt{-1}\left(L\right)\end{matrix}\right.\\\left\{{}\begin{matrix}x< \sqrt{2}\\x< \sqrt{-1}\left(L\right)\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x>\sqrt{2}\\x< \sqrt{2}\end{matrix}\right.\)

Vậy \(P>0\Leftrightarrow\left[{}\begin{matrix}x>\sqrt{2}\\x< \sqrt{2}\end{matrix}\right.\)

 

Bình luận (0)

Các câu hỏi tương tự
NS
Xem chi tiết
NS
Xem chi tiết
NS
Xem chi tiết
NS
Xem chi tiết
NS
Xem chi tiết
NS
Xem chi tiết
AQ
Xem chi tiết
LL
Xem chi tiết
QE
Xem chi tiết