Chương I - Căn bậc hai. Căn bậc ba

LM

Cho biểu thức : P=\(\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\right)\) : \(\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\) với x ≥0 và x ≠9
a)Rút gọn P
b)Tìm x để P đạt giá trị nhỏ nhất
-GIÚP MÌNH VỚI Ạ-

NL
8 tháng 12 2018 lúc 17:15

ĐKXĐ: \(x\ge0;x\ne9\)

\(P=\left(\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)}{x-9}+\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{x-9}-\dfrac{3x+3}{x-9}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\right)\)

\(P=\left(\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{x-9}\right)\left(\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\right)\)

\(P=\left(\dfrac{-3\sqrt{x}-3}{x-3}\right)\left(\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\right)=\dfrac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\left(\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\right)\)

\(P=\dfrac{-3}{\sqrt{x}+3}\)

b/ Do \(-3< 0\Rightarrow P_{min}\) khi \(\sqrt{x}+3\) nhỏ nhất

\(\sqrt{x}+3\ge3\Rightarrow P_{min}=\dfrac{-3}{3}=-1\) khi \(\sqrt{x}+3=3\Leftrightarrow x=0\)

Vậy với \(x=0\) thì P đạt GTNN

Bình luận (0)
TN
8 tháng 12 2018 lúc 17:30

a) \(P=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)=\left[\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\dfrac{3x+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right]:\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}=\left[\dfrac{2x-6\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\dfrac{x+3\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\dfrac{3x+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right]:\dfrac{\sqrt{x}+1}{\sqrt{x}-3}=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\dfrac{\sqrt{x}-3}{\sqrt{x}+1}=\dfrac{-3\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\dfrac{\sqrt{x}-3}{\sqrt{x}+1}=\dfrac{-3\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}=\dfrac{-3}{\sqrt{x}+3}\)

b) Ta có \(\sqrt{x}\ge0\Leftrightarrow\sqrt{x}+3\ge3\Leftrightarrow\dfrac{-3}{\sqrt{x}+3}\ge-1\)

Dấu bằng xảy ra khi x=0

Vậy x=0 thì P đạt GTNN là -1

Bình luận (0)

Các câu hỏi tương tự
DD
Xem chi tiết
AQ
Xem chi tiết
HL
Xem chi tiết
LG
Xem chi tiết
AQ
Xem chi tiết
LL
Xem chi tiết
VP
Xem chi tiết
QE
Xem chi tiết
HS
Xem chi tiết