Chương I - Căn bậc hai. Căn bậc ba

TK

cho biểu thức P= căn a+3/căn a-2 -căn a-1/ a=căn a+2 + 4 căn a-/4-a

a) tìm dkxd và rút gọn P

b) tính giá trị của P với a=9

c)tìm x để P bé hơn 0

giúp mình vs ạ mình cần gấp

H9
8 tháng 8 2023 lúc 10:55

Ta có: \(P=\dfrac{\sqrt{a}+3}{\sqrt{a}-2}-\dfrac{\sqrt{a}-1}{\sqrt{a}+2}+\dfrac{4\sqrt{a}}{4-\sqrt{a}}\)

a) ĐKXĐ: \(a\ne4;a\ne16;a\ge0\)

\(P=\dfrac{\sqrt{a}+3}{\sqrt{a}-2}-\dfrac{\sqrt{a}-1}{\sqrt{a}+2}-\dfrac{4\sqrt{a}}{\sqrt{a}-4}\)

\(P=\dfrac{\left(\sqrt{a}+3\right)\left(\sqrt{a}+2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}-\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}-\dfrac{4\sqrt{a}}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\)

\(P=\dfrac{a+3\sqrt{a}+2\sqrt{a}+6-a+2\sqrt{a}+\sqrt{a}-2-4\sqrt{a}}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}\)

\(P=\dfrac{4\sqrt{a}+4}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}\)

\(P=\dfrac{4\sqrt{a}+4}{a-4}\)

b) Thay x=9 vào P ta có:

\(P=\dfrac{4\cdot\sqrt{9}+4}{9-4}=\dfrac{16}{5}\)

c) \(P< 0\) khi:

\(\dfrac{4\sqrt{x}+4}{a-4}< 0\) 

Mà: \(4\sqrt{x}+4>0\)

\(\Rightarrow a-4< 0\)

\(\Rightarrow a< 4\) 

kết hợp với Đk ta có:

\(0\le x< 4\)

Bình luận (0)

Các câu hỏi tương tự
TK
Xem chi tiết
TK
Xem chi tiết
TK
Xem chi tiết
TK
Xem chi tiết
TD
Xem chi tiết
KL
Xem chi tiết
HL
Xem chi tiết
HT
Xem chi tiết
NT
Xem chi tiết