a: \(A=\left(\dfrac{\left(2x+2\sqrt{x}\right)-\left(\sqrt{x}+1\right)}{1-x}+\dfrac{\sqrt{x}\left(2x+\sqrt{x}-1\right)}{1+x\sqrt{x}}\right)\cdot\dfrac{\sqrt{x}\left(1-\sqrt{x}\right)}{2\sqrt{x}-1}\)
\(=\left(2\sqrt{x}-1\right)\cdot\dfrac{\sqrt{x}\left(1-\sqrt{x}\right)}{2\sqrt{x}-1}\cdot\left(\dfrac{\sqrt{x}+1}{1-x}+\dfrac{\sqrt{x}+1}{1+x\sqrt{x}}\right)\)
\(=\sqrt{x}\left(1-\sqrt{x}\right)\cdot\left(\dfrac{-1}{\sqrt{x}-1}+\dfrac{1}{x-\sqrt{x}+1}\right)\)
\(=\sqrt{x}\left(1-\sqrt{x}\right)\cdot\dfrac{-x+\sqrt{x}-1+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x-\sqrt{x}+1\right)}\)
\(=\dfrac{\sqrt{x}\cdot\left(-x+2\sqrt{x}-2\right)}{-x+\sqrt{x}-1}=\dfrac{\sqrt{x}\left(x-2\sqrt{x}+2\right)}{x-\sqrt{x}+1}\)
c: \(x-2\sqrt{x}+2=\left(\sqrt{x}-1\right)^2+1>=1\)
\(\left(x-\sqrt{x}+1\right)=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}\)
căn x>=0
=>A không có giá trị lớn nhất