Bài 9: Biến đổi các biểu thức hữu tỉ. Giá trị của phân thức

PD

Cho biểu thức :

\(\frac{1}{x+2}-\frac{x^3-4x}{x^2+4x}\left(\frac{1}{x^2+4x+4}+\frac{1}{4-x^2}\right)\)

a) Với giá trị nào của x thì giá trị của biểu thức được xác định

b) Rút gọn biểu thức

AH
2 tháng 3 2020 lúc 0:30

Lời giải:
a) ĐKXĐ: \(\left\{\begin{matrix} x+2\neq 0\\ x^2+4x\neq 0\\ x^2+4x+4\neq 0\\ 4-x^2\neq 0\end{matrix}\right.\) \(\Leftrightarrow \left\{\begin{matrix} x+2\neq 0\\ x(x+4)\neq 0\\ (x+2)^2\neq 0\\ (2-x)(2+x)\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x+2\neq 0\\ x\neq 0\\ x+4\neq 0\\ 2-x\neq 0\end{matrix}\right.\Leftrightarrow x\neq 0; x\neq \pm 2; x\neq -4\)

b)

\(A=\frac{1}{x+2}-\frac{x(x^2-4)}{x(x+4)}\left[\frac{1}{(x+2)^2}-\frac{1}{x^2-4}\right]\)

\(=\frac{1}{x+2}-\frac{x(x^2-4)}{x(x+4)}.\frac{1}{(x+2)^2}+\frac{x(x^2-4)}{x(x+4)}.\frac{1}{x^2-4}\)

\(=\frac{1}{x+2}-\frac{x(x-2)(x+2)}{x(x+4)(x+2)^2}+\frac{1}{x+4}\)

\(=\frac{1}{x+2}-\frac{x-2}{(x+4)(x+2)}+\frac{1}{x+4}=\frac{x+4-(x-2)+(x+2)}{(x+2)(x+4)}=\frac{x+8}{(x+2)(x+4)}\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
NL
Xem chi tiết
NL
Xem chi tiết
CH
Xem chi tiết
KA
Xem chi tiết
SK
Xem chi tiết
PB
Xem chi tiết
AG
Xem chi tiết
TT
Xem chi tiết
TH
Xem chi tiết