Violympic toán 7

H24

cho biểu thức C = \(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+......+\frac{100}{3^{100}}\)

Chứng minh C < \(\frac{3}{4}\)

NL
17 tháng 4 2019 lúc 21:52

\(C=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{99}{3^{99}}+\frac{100}{3^{100}}\)

\(\Rightarrow3C=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{99}{3^{98}}+\frac{100}{3^{99}}\)

Trừ dưới cho trên:

\(2C=1+\frac{2}{3}-\frac{1}{3}+\frac{3}{3^2}-\frac{2}{3^2}+\frac{4}{3^3}-\frac{3}{3^3}+...+\frac{100}{3^{99}}-\frac{99}{3^{99}}-\frac{100}{3^{100}}\)

\(2C=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

Đặt \(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}=B\Rightarrow2C=B-\frac{100}{3^{100}}\)

\(B=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)

\(\Rightarrow3B=3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)

\(\Rightarrow3B-3+\frac{1}{3^{99}}=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}=B\)

\(\Rightarrow2B=3-\frac{1}{3^{99}}\Rightarrow B=\frac{3}{2}-\frac{1}{2.3^{99}}< \frac{3}{2}\)

\(\Rightarrow2C=B-\frac{100}{3^{100}}< B< \frac{3}{2}\Rightarrow C< \frac{3}{4}\)

Bình luận (0)

Các câu hỏi tương tự
TG
Xem chi tiết
TG
Xem chi tiết
DT
Xem chi tiết
DH
Xem chi tiết
DH
Xem chi tiết
DH
Xem chi tiết
H24
Xem chi tiết
TH
Xem chi tiết
TH
Xem chi tiết