\(B=\left(\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\right)\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}\)
\(=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)^2}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}-1}{\sqrt{x}}\)
Để \(B< \frac{1}{2}\Rightarrow\frac{\sqrt{x}-1}{\sqrt{x}}< \frac{1}{2}\Rightarrow2\sqrt{x}-2< \sqrt{x}\) (do \(\sqrt{x}>0\))
\(\Rightarrow\sqrt{x}< 2\Rightarrow x< 4\Rightarrow\left\{{}\begin{matrix}0< x< 4\\x\ne1\end{matrix}\right.\)