a)Có: A=(\(\frac{x}{x^2-4}+\frac{2}{2-x}+\frac{1}{x+2}\)):\(\left(x-2+\frac{10-x^2}{x+2}\right)\)
A=\(\left(\frac{x}{x^2-4}-\frac{2}{x-2}+\frac{1}{x+2}\right)\)\(:\left[\frac{\left(x+2\right)\left(x-2\right)}{x+2}+\frac{10-x^2}{x+2}\right]\)
A=\(\left[\frac{x}{\left(x-2\right)\left(x+2\right)}-\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{x-2}{\left(x-2\right)\left(x+2\right)}\right]\):\(\left(\frac{x^2-4+10-x^2}{x+2}\right)\)
A=\(\frac{x-2x-4+x-2}{\left(x-2\right)\left(x+2\right)}:\frac{6}{x+2}\) ĐKXĐ: \(x\ne\pm2\)
A=\(\frac{-6}{\left(x-2\right)\left(x+2\right)}.\frac{x+2}{6}\)
A=\(\frac{-1}{x-2}\)
A=\(\frac{1}{2-x}\)
Vậy A=\(\frac{1}{2-x}\) với \(x\ne\pm2\)