Violympic toán 8

MM

Cho biểu thức: \(A=\dfrac{mn^2+n^2\left(n^2-m\right)+1}{m^2n^4+2n^4+m^2+2}\)

a, Rút gọn biểu thức A.

b, CMR biểu thức A luôn dương.

c, Với giá trị nào của m thì A đạt giá trị lớn nhất

RT
24 tháng 11 2018 lúc 10:30

a) \(A=\dfrac{mn^2+n^2\left(n^2-m\right)+1}{m^2n^4+2n^4+m^2+2}\)

\(A=\dfrac{mn^2+n^4-mn^2+1}{n^4\left(m^2+2\right)+m^2+2}=\dfrac{n^4+1}{\left(m^2+2\right)\left(n^4+1\right)}=\dfrac{1}{m^2+2}\)

b) CM \(\dfrac{1}{m^2+2}>0\)

ta có \(\left\{{}\begin{matrix}m^2+2>0\\1>0\end{matrix}\right.\forall m\in R\)

\(\Rightarrow\dfrac{1}{m^2+2}>0\forall m\in R\)

vậy đpcm

c) \(A=\dfrac{1}{m^2+2}=\dfrac{2}{2m^2+4}=\dfrac{m^2+2-m^2}{2m^2+4}=\dfrac{1}{2}-\dfrac{m^2}{2m^2+4}\le\dfrac{1}{2}\forall m\in R\)

dấu '=' xảy ra khi m=0

vậy \(A_{max}=\dfrac{1}{2}\) khi m=0

Bình luận (0)

Các câu hỏi tương tự
NS
Xem chi tiết
T8
Xem chi tiết
H24
Xem chi tiết
TN
Xem chi tiết
VT
Xem chi tiết
LT
Xem chi tiết
TN
Xem chi tiết
DP
Xem chi tiết
TK
Xem chi tiết