Chương I - Căn bậc hai. Căn bậc ba

JY

Cho biểu thức A = \(\left(\dfrac{\sqrt{x}+2}{x-1}-\dfrac{\sqrt{x}-2}{x-2\sqrt{x}+1}\right):\dfrac{4x}{\left(x-1\right)^2}\)

a) Rút gọn A.

b) tính giá trị của A biết \(\left|x-5\right|=4\).

NL
11 tháng 7 2021 lúc 20:48

ĐKXĐ: \(x>0;x\ne1\)

\(A=\left(\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)}-\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)}\right).\dfrac{\left(x-1\right)^2}{4x}\)

\(=\left(\dfrac{2\sqrt{x}}{\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)}\right).\dfrac{\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)^2}{4x}\)

\(=\dfrac{\sqrt{x}+1}{2\sqrt{x}}\)

b.

\(\left|x-5\right|=4\Rightarrow\left[{}\begin{matrix}x-5=4\\x-5=-4\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=9\\x=1\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow A=\dfrac{\sqrt{9}+1}{2\sqrt{9}}=\dfrac{2}{3}\)

Bình luận (0)