Chương I - Căn bậc hai. Căn bậc ba

HL

Cho biểu thức A= (\(\dfrac{1}{\sqrt{x}+1}+\dfrac{1}{\sqrt{x}-1}\)):\(\dfrac{\sqrt{x}+1}{\left(\sqrt{x-1}\right)^2}\)với x>0; x\(\ne\)1

a.Rút gọn biểu thức A

b.Tính giá trị của x để A=\(\dfrac{1}{3}\)

NT
14 tháng 2 2021 lúc 20:37

a) Ta có: \(A=\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}+1}{\left(\sqrt{x-1}\right)^2}\)

\(=\left(\dfrac{\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\dfrac{\sqrt{x}+1}{x-1}\)

\(=\dfrac{\sqrt{x}-1+\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}+1}\)

\(=\dfrac{2\sqrt{x}}{\sqrt{x}+1}\)

b) Để \(A=\dfrac{1}{3}\) thì \(\dfrac{2\sqrt{x}}{\sqrt{x}+1}=\dfrac{1}{3}\)

\(\Leftrightarrow\sqrt{x}+1=6\sqrt{x}\)

\(\Leftrightarrow\sqrt{x}+1-6\sqrt{x}=0\)

\(\Leftrightarrow-5\sqrt{x}+1=0\)

\(\Leftrightarrow-5\sqrt{x}=-1\)

\(\Leftrightarrow\sqrt{x}=\dfrac{1}{5}\)

hay \(x=\dfrac{1}{25}\)(nhận)

Vậy: Để \(A=\dfrac{1}{3}\) thì \(x=\dfrac{1}{25}\)

Bình luận (0)
NA
14 tháng 2 2021 lúc 20:40

undefined

Bình luận (0)

Các câu hỏi tương tự
HL
Xem chi tiết
HL
Xem chi tiết
HL
Xem chi tiết
HL
Xem chi tiết
LL
Xem chi tiết
LL
Xem chi tiết
LL
Xem chi tiết
NS
Xem chi tiết
NS
Xem chi tiết