Chương I : Số hữu tỉ. Số thực

HT

Cho biểu thức

A = \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+..........+\dfrac{1}{2019}\)

B = \(\dfrac{2018}{1}+\dfrac{2017}{2}+\dfrac{2016}{3}+.......+\dfrac{1}{2018}\) Chứng tỏ rằng \(\dfrac{B}{A}\)là số nguyên

MV
29 tháng 1 2019 lúc 20:22

Theo bài ra, ta có: \(B=\dfrac{2018}{1}+\dfrac{2017}{2}+\dfrac{2016}{3}+...+\dfrac{1}{2018}\)

\(B=\left(\dfrac{2018}{1}+1\right)+\left(\dfrac{2017}{2}+1\right)+\left(\dfrac{2016}{3}+1\right)+...+\left(\dfrac{1}{2018}+1\right)-2018\)

\(B=2019+\dfrac{2019}{2}+\dfrac{2019}{3}+...+\dfrac{2019}{2018}-2018\)

\(B=\dfrac{2019}{2}+\dfrac{2019}{3}+...+\dfrac{2019}{2018}+\left(2019-2018\right)\)

\(B=\dfrac{2019}{2}+\dfrac{2019}{3}+...+\dfrac{2019}{2018}+1\)

\(B=\dfrac{2019}{2}+\dfrac{2019}{3}+...+\dfrac{2019}{2018}+\dfrac{2019}{2019}\)

\(B=2019\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2019}\right)\)

Khi đó:\(\dfrac{B}{A}=\dfrac{2019\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2019}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2019}}\)

\(\Rightarrow\dfrac{B}{A}=2019\), là 1 số nguyên.

Vậy \(\dfrac{B}{A}\) là số nguyên.

Bình luận (0)

Các câu hỏi tương tự
LT
Xem chi tiết
HD
Xem chi tiết
NA
Xem chi tiết
SL
Xem chi tiết
ML
Xem chi tiết
YC
Xem chi tiết
NT
Xem chi tiết
NN
Xem chi tiết
GJ
Xem chi tiết