Đại số lớp 8

DP

Cho biết : \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\)

CMR : \(a+b+c=abc.\)

BC
22 tháng 11 2016 lúc 16:38

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\Rightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=4\)

=>\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ac}=4\)

=>\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=4\)

=>\(2+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=4\)

=>\(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}=1\)

=>\(\frac{c+a+b}{abc}=1\)

=> a+b+c=abc (đpcm)

Bình luận (0)
VT
22 tháng 11 2016 lúc 10:50

Từ \(\left(1\right)\) suy ra : \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=4\)

Do \(\left(2\right)\) nên \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1,\) suy ra \(\frac{a+b+c}{abc}=1\\.\)

Do đó \(a+b+c=abc\)

Bình luận (0)

Các câu hỏi tương tự
BP
Xem chi tiết
NT
Xem chi tiết
NL
Xem chi tiết
PL
Xem chi tiết
H24
Xem chi tiết
KT
Xem chi tiết
DN
Xem chi tiết
VQ
Xem chi tiết
NA
Xem chi tiết