Bài 2. Đường trung bình của tam giác

QL

Cho biết cạnh mỗi ô vuông bằng \(1cm\). Tính độ dài các đoạn \(PQ,PR,RQ,AB,BC,CA\) trong Hình 11.

 

HM
13 tháng 9 2023 lúc 21:57

Đoạn thẳng \(AB\) là đường chéo của hình chữ nhật với chiều dài là \(4cm;\) chiều rộng là \(2cm\). Áp dụng định lí Py – ta – go ta được: \(A{B^2} = {2^2} + {4^2} = 4 + 16 = 20 \Rightarrow AB = \sqrt {20}  = 2\sqrt 5 \)

Đoạn thẳng \(AC\) là đường chéo của hình chữ nhật với chiều dài là \(4cm;\) chiều rộng là \(2cm\). Áp dụng định lí Py – ta – go ta được: \(A{C^2} = {2^2} + {4^2} = 4 + 16 = 20 \Rightarrow AC = \sqrt {20}  = 2\sqrt 5 \)

Đoạn thẳng \(BC\) là đường chéo của hình chữ nhật với chiều dài là \(6cm;\) chiều rộng là \(2cm\). Áp dụng định lí Py – ta – go ta được: \(B{C^2} = {2^2} + {6^2} = 4 + 36 = 40 \Rightarrow BC = \sqrt {40}  = 2\sqrt {10} \)

Từ hình vẽ ta thấy:

\(Q\) là trung điểm của \(AC\);

\(R\) là trung điểm của \(AB\);

\(P\) là trung điểm của \(BC\).

- Vì \(Q\) là trung điểm của \(AC\); \(R\) là trung điểm của \(AB\) nên \(QR\) là đường trung bình của tam giác \(ABC \Rightarrow QR = \frac{1}{2}BC\) (tính chất đường trung bình)

\( \Leftrightarrow QR = \frac{1}{2}.2\sqrt {10}  = \sqrt {10} \left( {cm} \right)\).

- Vì \(Q\) là trung điểm của \(AC\); \(P\) là trung điểm của \(BC\) nên \(QP\) là đường trung bình của tam giác \(ABC \Rightarrow QP = \frac{1}{2}AB\) (tính chất đường trung bình)

\( \Leftrightarrow QP = \frac{1}{2}.2\sqrt 5  = \sqrt 5 \left( {cm} \right)\).

- \(R\) là trung điểm của \(AB\); \(P\) là trung điểm của \(BC\) nên \(RP\) là đường trung bình của tam giác \(ABC \Rightarrow RP = \frac{1}{2}AC\) (tính chất đường trung bình)

\( \Leftrightarrow RP = \frac{1}{2}.2\sqrt 5  = \sqrt 5 \left( {cm} \right)\).

Bình luận (0)
NT
13 tháng 9 2023 lúc 21:59

\(AB=\sqrt{4^2+2^2}=2\sqrt{5}\left(cm\right);AC=\sqrt{4^2+2^2}=2\sqrt{5}\left(cm\right)\)

BC=căn 2^2+6^2=2*căn 10(cm)

Xét ΔABC có P,Q lần lượt là trung điểm của CB,CA

=>PQ là đường trung bình

=>\(PQ=\dfrac{AB}{2}=\sqrt{5}\left(cm\right)\)

Xét ΔABCcóQ,R lần lượt là trung điểm của AC,AB

=>QR là đường trung bình

=>\(QR=\dfrac{BC}{2}=\sqrt{10}\left(cm\right)\)

Xét ΔABC có P,R lần lượt là trung điểm của BC,BA

=>PR là đường trung bình

=>\(PR=\dfrac{AC}{2}=\sqrt{5}\left(cm\right)\)

Bình luận (0)

Các câu hỏi tương tự
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết