Đại số lớp 8

NN

cho b>a>0 và \(3a^2+b^2=4ab\)

tính giá trị của biểu thức : \(\frac{a-b}{a+b}\)

NN
27 tháng 11 2016 lúc 19:13

Ta có: \(3a^2+b^2=4ab\Rightarrow4a^2-4ab+b^2-a^2=0\Rightarrow\left(2a-b\right)^2-a^2=0\)

\(\Rightarrow\left(2a-b-a\right)\left(2a-b+a\right)=0\Rightarrow\left(a-b\right)\left(3a-b\right)=0\)

Để đẳng thức xảy ra \(\Rightarrow\left[\begin{array}{nghiempt}a-b=0\\3a-b=0\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}a=b\\3a=b\end{array}\right.\)

theo đề ra thì b>a>0 => không xảy ra trường hợp a=b.

\(\Rightarrow\frac{a-b}{a+b}=\frac{a-3a}{a+3a}=\frac{-2a}{4a}=-\frac{1}{2}\)

P/s: Không biết cách trình bày có đc không a~

 

Bình luận (0)

Các câu hỏi tương tự
VQ
Xem chi tiết
VQ
Xem chi tiết
TD
Xem chi tiết
TN
Xem chi tiết
DP
Xem chi tiết
H24
Xem chi tiết
VC
Xem chi tiết
NN
Xem chi tiết
MC
Xem chi tiết