Đại số lớp 7

H24

cho ba cố khác nhau từng đôi một và khác 0 thỏa mãn : \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\) . CM: \(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}\) ko phụ thuộc vào các giá trị của a; b; c

SG
15 tháng 11 2016 lúc 20:01

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{\left(b+c\right)+\left(a+c\right)+\left(a+b\right)}=\frac{a+b+c}{2.\left(a+b+c\right)}\left(1\right)\)

Xét 2 trường hợp:

TH1: a + b + c = 0 \(\Rightarrow\begin{cases}a+b=-c\\b+c=-a\\a+c=-b\end{cases}\)

\(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=\frac{-a}{a}+\frac{-b}{b}+\frac{-c}{c}=-1+\left(-1\right)+\left(-1\right)=-3\), không phụ thuộc vào giá trị của a; b; c (đpcm)

TH2: a + b + c \(\ne0\)

Từ (1) ta có: \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{1}{2}\) \(\Rightarrow\begin{cases}2a=b+c\\2b=a+c\\2c=a+b\end{cases}\)

\(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=\frac{2a}{a}+\frac{2b}{b}+\frac{2c}{c}=2+2+2=6\), không phụ thuộc vào giá trị của a; b; c (đpcm)

 

Bình luận (8)
HN
15 tháng 11 2016 lúc 19:55

\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)

Suy ra \(\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b}{c}=2\)

\(\Rightarrow\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=2+2+2=6\)

Bình luận (0)
NT
15 tháng 11 2016 lúc 20:00

Giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{b+c+a+c+a+b}=\frac{a+b+c}{2a+2b+2c}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)

\(\Rightarrow\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{1}{6}\)

\(\Rightarrow1:\left(\frac{a}{b+c}+\frac{a+c}{b}+\frac{a+b}{c}\right)=1:\frac{1}{6}\)

\(\Rightarrow1:\frac{a}{b+c}+1:\frac{a+c}{b}+1:\frac{a+b}{c}=6\)

\(\Rightarrow\frac{b+c}{a}+\frac{b}{a+c}+\frac{c}{a+b}=6\)

Bình luận (0)

Các câu hỏi tương tự
QS
Xem chi tiết
PA
Xem chi tiết
BT
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
TT
Xem chi tiết
TN
Xem chi tiết
TC
Xem chi tiết
DN
Xem chi tiết