Đại số lớp 7

QS

Cho a,b,c là các số khác 0 thỏa mãn \(\frac{a^{2015}}{b^{2017}+c^{2019}}\)=\(\frac{b^{2017}}{a^{2015}+c^{2019}}\)=\(\frac{c^{2019}}{a^{2015}+b^{2017}}\)

Chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào giá trị của a,b,c

S=\(\frac{b^{2017}+c^{2019}}{a^{2015}}\)+\(\frac{a^{2015}+c^{2019}}{b^{2017}}\)+\(\frac{a^{2015}+b^{2017}}{c^{2019}}\)
Giúp với ạ hihi

H24
24 tháng 11 2016 lúc 20:54

theo bài ra ta có

\(\frac{a^{2015}}{b^{2017}+c^{2019}}=\frac{b^{2017}}{a^{2015}+c^{2019}}=\frac{c^{2019}}{a^{2015}+b^{2017}}\)

=>\(\frac{a^{2015}}{b^{2017}+c^{2019}}+1=\frac{b^{2017}}{a^{2015}+c^{2019}}+1=\frac{c^{2019}}{a^{2015}+b^{2017}}+1\)

=> \(\frac{a^{2015}+b^{2017}+c^{2019}}{b^{2017}+c^{2019}}=\frac{a^{2015}+b^{2017}+c^{2019}}{a^{2015}+c^{2019}}=\frac{a^{2015}+b^{2017}+c^{2019}}{a^{2015}+b^{2017}}\)

nếu a2015+ b2017 +c2019 = 0

=> b2017+ c2019 = -(a2015) (1)

=> a2015+ c2019= -(b2017) (2)

=> a2015+ b2017= -(c2019) (3)

thay 1, 2, 3 vào S ta có:

S = \(\frac{b^{2017}+c^{2019}}{a^{2015}}+\frac{a^{2015}+c^{2019}}{b^{2017}}+\frac{a^{2015}+b^{2017}}{c^{2019}}\)

=> S =\(\frac{-\left(a^{2015}\right)}{a^{2015}}+\frac{-\left(b^{2017}\right)}{b^{2017}}+\frac{-\left(c^{2019}\right)}{c^{2019}}\)

S = -1 + -1 + -1

S = -3

vậy S ko phụ thuộc vào giá trị a,b,c

nếu a2015+b2017+c2019 khác 0

=> b2017+c2019 = a2015+c2019=a2015+b2017

=> b2017 = a2015 = c2019

=>S=\(\frac{b^{2017}+c^{2019}}{a^{2015}}+\frac{a^{2015}+c^{2019}}{b^{2017}}+\frac{a^{2015}+b^{2017}}{c^{2019}}=\frac{2a^{2015}}{a^{2015}}+\frac{2b^{2017}}{b^{2017}}+\frac{2c^{2019}}{c^{2019}}=2+2+2=6\)

VẬY S ko phụ thuộc vào các giá trị của a,b,c

từ 2 trường hợp trên => giá trị của biểu thức S ko phụ thuộc vào giá trị của a,b,c (đpcm)

Bình luận (1)

Các câu hỏi tương tự
BT
Xem chi tiết
H24
Xem chi tiết
TA
Xem chi tiết
TY
Xem chi tiết
NT
Xem chi tiết
TV
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
EC
Xem chi tiết