Violympic toán 9

TC

Cho A=\(\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x}{x-9}\right):\left(\dfrac{2\sqrt{x}}{\sqrt{x}-3}-1\right)\)

a,Tìm ĐKXĐ

b, rút gọn A

c, tìm x để A\(\le-\dfrac{1}{3}\)

d, tìm GTNN của A

HS
14 tháng 10 2018 lúc 13:08

a, ĐKXĐ: \(x\ge0;x\ne9\)

b, rút gọn

A=\(\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x}{x-9}\right):\left(\dfrac{2\sqrt{x}}{\sqrt{x}-3}-1\right)\)

\(=\left[\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}-\dfrac{3x+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right]:\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-\dfrac{\sqrt{x}+3}{\sqrt{x}-3}\right)\)

\(=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}+3x-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\dfrac{\sqrt{x}+1}{x-3}\)

\(=\dfrac{-3\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\dfrac{\sqrt{x}-3}{x+1}\\ =\dfrac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\\ =\dfrac{-3}{\sqrt{x}+3}\)

c,Cho \(A\le-\dfrac{1}{3}\)

\(< =>\dfrac{3}{\sqrt{x}+3}\le-\dfrac{1}{3}\\ < =>\dfrac{-3}{\sqrt{x}+3}+\dfrac{1}{3}\le0\\ < =>\dfrac{-9+\sqrt{x}+3}{3\left(\sqrt{x}+3\right)}\le0\\ < =>\dfrac{\sqrt{x}-6}{3\left(\sqrt{x}+3\right)}\le0\\ < =>\sqrt{x}-6\le0\\ < =>\sqrt{x}\le36\\ < =>0\le x\le36\)

Vậy để \(A\le-\dfrac{1}{3}\) thì \(0\le x\le36\)\(x\ne9\)

d, \(A=\dfrac{-3}{\sqrt{x}+3}\)

Ta có: \(\sqrt{x}+3\ge3\\ =>\dfrac{1}{\sqrt{x}+3}\le\dfrac{1}{3}\\ =>\dfrac{-3}{\sqrt{x}+3}\ge\dfrac{-3}{3}\\ =-1\)

Vậy GTNN của A=-1

Xấu ''='' xảy ra khi \(\sqrt{x}=0\\ \Leftrightarrow x=0\)

Bình luận (2)

Các câu hỏi tương tự
KG
Xem chi tiết
NS
Xem chi tiết
TN
Xem chi tiết
MB
Xem chi tiết
TL
Xem chi tiết
LH
Xem chi tiết
VT
Xem chi tiết
TL
Xem chi tiết
TD
Xem chi tiết