Câu a : ĐKXĐ : \(x\ne0\) và \(x\ne1\)
\(A=\dfrac{x^2}{x-1}-\dfrac{2x^2-x}{x^2-x}\)
\(=\dfrac{x^3}{x\left(x-1\right)}-\dfrac{2x^2-x}{x\left(x-1\right)}\)
\(=\dfrac{x^3-2x^2+x}{x\left(x-1\right)}\)
\(=\dfrac{x\left(x^2-2x+1\right)}{x\left(x-1\right)}\)
\(=\dfrac{x\left(x-1\right)^2}{x\left(x-1\right)}\)
\(=x-1\)
Câu b : \(M=A.x=\left(x-1\right).x=x^2-x\)
Ta có : \(M=x^2-x=\left(x^2-x+\dfrac{1}{4}\right)-\dfrac{1}{4}=\left(x-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)
Vậy \(GTNN\) của M là \(-\dfrac{1}{4}\) . Dấu \("="\) xảy ra khi \(\left(x-\dfrac{1}{2}\right)^2=0\Leftrightarrow x=\dfrac{1}{2}\)