cho bt A=\(\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{x-1}\right):\left[\dfrac{2}{x}-\dfrac{2-x}{x\left(\sqrt{x}+1\right)}\right]\)
a)rút gọn bt A
b)tính giá trị của bt A khi\(x=4+2\sqrt{3}\)
c)tìm giá trị của x để bt \(\sqrt{A}\)có giá trị nỏ nhất
Cho biểu thức:A=\(\dfrac{4\sqrt{x}}{\sqrt{x}-5}:\left(\dfrac{\sqrt{x}-2}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+2}+\dfrac{5-2\sqrt{x}}{x+\sqrt{x}-2}\right)\)
a) Rút gọn biểu thức A.
b) Tính giá trị của biểu thức A tại x=81
c) Tìm x sao cho A<4
Câu 1.
Cho hai biểu thức \(A=\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+2}-\dfrac{3\sqrt{x}}{x+\sqrt{x}-2}\) và \(B=\dfrac{\sqrt{x}+3}{\sqrt{x}+1};x\ge0;x\ne1.\)
a) Rút gọn A.
b) Tính giá trị của biểu thức B khi x = 9.
c) Tìm x để biểu thức S = A.B có giá trị lớn nhất.
Câu 2.
a) Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình:
Để hưởng ứng phong trào phòng chống dịch COVID-19, một chi đoàn thanh niên dự định làm 600 chiếc mũ ngăn giọt bắn trong một thời gian quy định. Nhờ tăng năng suất lao động mỗi giờ chi đoàn đó làm được nhiều hơn so với kế hoạch là 30 chiếc nên công việc được hoàn thành sớm hơn quy định 1 giờ. Hỏi theo kế hoạch 1 giờ chi đoàn đó phải làm bao nhiêu chiếc mũ ngăn giọt bắn?
b) Hộp sữa "cô gái Hà Lan" là một hình trụ có đường kính là 12 cm, chiều cao của hộp là 18 cm. Tính thể tích hộp sữa (làm tròn đến hàng đơn vị), cho biết π = 3,14.
Câu 3.
a) Giải hệ phương trình sau: \(\left\{{}\begin{matrix}\dfrac{1}{x+1}-\dfrac{3}{y+2}=-2\\\dfrac{2}{x+1}+\dfrac{1}{y+2}=3\end{matrix}\right.\)
b) Cho parabol (P): y = x2 và đường thẳng (d): y = 2mx - m2 + 1 (x là ẩn, m là tham số). Tìm m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt có hoành độ x1, x2 thỏa mãn x1 + 2x2 = 7.
Câu 4.
Cho đường tròn (O; R) có hai đường kính AB và CD vuông góc với nhau. Lấy điểm K thuộc cung nhỏ AC, kẻ KH ⊥ AB tại H. Tia AC cắt HK tại I, tia BC cắt HK tại E, nối AE cắt đường tròn (O; R) tại F.
a) Chứng minh tứ giác BHFE là tứ giác nội tiếp.
b) Chứng minh: EF.EA = EC.EB.
c) Tính theo R diện tích tam giác FEC khi H là trung điểm của OA.
d) Cho K di chuyển trên cung nhỏ AC. Chứng minh đường thẳng FH luôn đi qua một điểm cố định.
Cho biểu thức \(A=\left(\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1}\right)\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
a) Tìm điều kiện của x để A có nghĩa
b) Rút gọn A
c) Tìm các giá trị nguyên của x sao cho giá trị tương ứng của A nguyên
Câu 1:
Cho các biểu thức: \(A=\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}\) và \(B=\dfrac{\sqrt{x}-3}{\sqrt{x}-1}\) với x ≥ 0, x ≠ 1, x ≠ 9.
a) Tính giá trị của B khi x = 25;
b) Rút gọn biểu thức M = A.B;
c) Tìm x sao cho \(M< \sqrt{M}.\)
Câu 2:
a) Khi uống nước giải khát, người ta hay sử dụng ống hút bằng nhựa hình trụ có đường kính đáy là 0,4cm, độ dài trục là 16cm. Hỏi khi thải ra môi trường, diện tích nhựa gây ô nhiễm môi trường do 100 ống hút này gây ra là bao nhiêu?
b) Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình:
Tìm số tự nhiên có hai chữ số mà hiệu giữa chữ số hàng chục và chữ số hàng đơn vị là 3. Còn tổng các bình phương hai chữ số của số đó bằng 45.
Câu 3:
1) Xác định tọa độ các giao điểm của parabol (P): y = x2 và đường thẳng (d): \(y=\sqrt{3}x-\sqrt{3}+1.\)
2) Cho hệ phương trình: \(\left\{{}\begin{matrix}\left|x\right|+y=m\\2\left|x\right|-y=1\end{matrix}\right.\)
a) Giải hệ phương trình khi m = -1;
b) Tìm m để hệ phương trình có hai nghiệm phân biệt.
Câu 4:
Cho đường tròn (O;R) đường kính AB. Bán kính OC⊥AB tại O. Điểm M thuộc cung nhỏ AC. Nối BM cắt AC tại H. Kẻ HK⊥AB tại K. Lấy E thuộc đoạn thẳng MB sao cho BE = AM.
a) Chứng minh tứ giác BCHK là tứ giác nội tiếp;
b) Chứng minh tam giác CME vuông cân;
c) Chứng minh OCMK là tứ giác nội tiếp và tâm đường trong ngoại tiếp tam giác MCK luôn thuộc một đường thẳng cố định khi M di chuyển trên cung nhỏ AC.
Câu 5:
Giải phương trình: \(\left(x^2-5x+1\right)\left(x^2-4\right)=6\left(x-1\right)^2.\)
Cho biểu thức A = \(\dfrac{\sqrt{x}}{\sqrt{x}-5}-\dfrac{10\sqrt{x}}{x-25}-\dfrac{5}{\sqrt{x}+5}\) với \(x\ge0,x\ne25\).
Biểu thức A sau khi rút gọn là: \(\dfrac{\sqrt{x}-5}{\sqrt{x}+5}\)
1) Tìm các giá trị của x để A = \(\dfrac{2\sqrt{x}}{3}\)
6.A=\(\left(\dfrac{2}{\sqrt{x}-3}+\dfrac{2\sqrt{x}}{x-4\sqrt{x}+3}\right):\dfrac{2\left(x-2\sqrt{x}+1\right)}{\sqrt{x}-1}\)
a) Rút gọn A
b)Tìm a ϵ Z để biểu thức A nhận giá trị nguyên
cho biểu thức
A = \(\left(\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1}\right):\dfrac{\sqrt{x}}{\sqrt{x}+1}\)
1. Rút gọn biểu thức A
2. Tìm tất cả các số nguyên x để biểu thức A có giá trị là số nguyên
\(Cho\) \(A=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)và \(B=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{3\sqrt{x}+1}{x-1}\) với x \(\ge\) 0, x \(\ne1\)
a. Tính giá trị của A khi x = 16.
b. Rút gọn P = A + B
c. Tìm m để phương trình: mP = \(\sqrt{x}-2\) có hai nghiệm phân biệt