Violympic toán 8

AL

Cho a.c > 0 và \(\frac{1}{a}+\frac{1}{c}=\frac{2}{b}\) CMR: \(\frac{a+b}{2a-b}+\frac{c+b}{2c-b}\ge4\)

P/s: có thể sd các cách cm L9

KB
7 tháng 3 2019 lúc 20:03

Ta có : \(\frac{1}{a}+\frac{1}{c}=\frac{2}{b}\Leftrightarrow\frac{a+c}{ac}=\frac{2}{b}\Leftrightarrow b=\frac{2ac}{a+c}\)

\(\frac{a+b}{2a-b}=\frac{a+\frac{2ac}{a+c}}{2a-\frac{2ac}{a+c}}=\frac{\frac{a^2+3ac}{a+c}}{\frac{2a^2}{a+c}}=\frac{a^2+3ac}{2a^2}=\frac{a+3c}{2a}\left(1\right)\)

\(\frac{c+b}{2c-b}=\frac{c+\frac{2ac}{a+c}}{2c-\frac{2ac}{a+c}}=\frac{\frac{c^2+3ac}{a+c}}{\frac{2c^2}{a+c}}=\frac{c^2+3ac}{2c^2}=\frac{c+3a}{2c}\left(2\right)\)

Từ ( 1 ) ; ( 2 ) có : \(\frac{a+b}{2a-b}+\frac{c+b}{2c-b}=\frac{a+3c}{2a}+\frac{c+3a}{2c}=\frac{ac+3c^2+ac+3a^2}{2ac}=\frac{3\left(c^2+a^2\right)+2ac}{2ac}\)

Áp dụng BĐT Cauchy cho a ; c dương , ta có :

\(c^2+a^2\ge2ac\Rightarrow\frac{3\left(c^2+a^2\right)+2ac}{2ac}\ge\frac{3.2ac+2ac}{2ac}=4\)

Dấu " = " xảy ra \(\Leftrightarrow a=c\)

\(\frac{1}{a}+\frac{1}{c}=\frac{2}{b}\) \(\Rightarrow\frac{2}{a}=\frac{2}{b}\Rightarrow a=b=c\)

Vậy ...

Bình luận (0)

Các câu hỏi tương tự
LD
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
Y
Xem chi tiết
TT
Xem chi tiết
H24
Xem chi tiết
TT
Xem chi tiết
HV
Xem chi tiết
NH
Xem chi tiết