Đây cũng chính là 1 hệ quả của BĐT Schur bậc 1.
Khai triển ra hết sẽ về dạng tương đương:
\(a^3+b^3+c^3+3abc\ge a^2\left(b+c\right)+b^2\left(c+a\right)+c^2\left(a+b\right)\)
\(\Leftrightarrow a\left(a-b\right)\left(a-c\right)+b\left(b-a\right)\left(b-c\right)+c\left(c-a\right)\left(c-b\right)\ge0\)
Đến đây giả sử \(a\ge b\ge c\) sẽ có \(a\left(a-b\right)\left(a-c\right)\ge b\left(a-b\right)\left(b-c\right)\) và \(c\left(c-a\right)\left(c-b\right)\ge0\) nên ta có đpcm.