Chương 3: VECTƠ TRONG KHÔNG GIAN. QUAN HỆ VUÔNG GÓC

NN

Cho ABCDEF là lục giác lồi nội tiếp đường tròn bán kính R có các cạnh AB=CA=EF=R. Chứng minh rằng trung điểm 3 cạnh BC, DE, FA là đỉnh của một tam giác đều.

NB
22 tháng 3 2016 lúc 16:17

Ta cần chứng minh tam giác MNP là tam giác cân và có một góc bằng \(\frac{\Pi}{3}\)

Giả sử  lục giacs có hướng âm, kí hiệu \(f\) là phép quay vec tơ theo góc \(-\frac{\Pi}{3}\) và M, N. P theo thứ tự là trung điểm FA, BC, DE

Khi đó AB=BO, CD=DO=OC, EF=FO=OE nên các tam giác ABO, CDO, EFO đều và có hướng âm

Suy ra \(f\left(\overrightarrow{AB}\right)=\overrightarrow{AO}\)\(f\left(\overrightarrow{OC}\right)=\overrightarrow{OD}\)\(f\left(\overrightarrow{FO}\right)=\overrightarrow{FE}\)

Từ đó ta có :

\(f\left(\overrightarrow{MN}\right)=f\left(\frac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{FC}\right)\right)=\frac{1}{2}\left(f\left(\overrightarrow{AB}\right)+f\left(\overrightarrow{FC}\right)\right)\)

                \(=\frac{1}{2}\left(\overrightarrow{AO}\right)+\overrightarrow{OD}+\overrightarrow{FE}=\frac{1}{2}\left(\overrightarrow{AD}+\overrightarrow{FE}\right)\)

                \(=\overrightarrow{MP}\)

Suy ra tam giác MNP cân và có góc PMN = \(\frac{\Pi}{3}\) => Điều phải chứng minh

Bình luận (0)

Các câu hỏi tương tự
NT
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết
TV
Xem chi tiết
NA
Xem chi tiết
NN
Xem chi tiết
DQ
Xem chi tiết
DQ
Xem chi tiết
TH
Xem chi tiết