Violympic toán 9

NT

Cho a,b,c,d,e thay đổi thuộc đoạn [-1;1] và a+b+c+d=0. tìm max \(a^2+b^2+c^2+d^2+e^2\)

AH
28 tháng 12 2018 lúc 15:33

Lời giải:

\(a,b,c,d,e\in [-1;1]\Rightarrow \left\{\begin{matrix} a^2\leq |a|\\ b^2\leq |b|\\ c^2\leq |c|\\ d^2\leq |d|\\ e^2\leq |e|\\ |d|; |e|\leq 1\end{matrix}\right.\)

\(\Rightarrow a^2+b^2+c^2+d^2+e^2\leq |a|+|b|+|c|+|d|+|e|(*)\)

Có $5$ số nên theo nguyên lý Dirichlet thì tồn tại ít nhất \(\left[\frac{5}{2}\right]+1=3\) số cùng dấu. Giả sử đó là $a,b,c$

Khi đó \(ab\geq 0; c(a+b)\geq 0\)

\(\Rightarrow |a|+|b|+|c|=|a+b|+|c|=|a+b+c|\)

\(\Rightarrow |a|+|b|+|c|+|d|+|e|=|a+b+c|+|d|+|e|\)

\(=|-(d+e)|+|d|+|e|=|d+e|+|d|+|e|\)

\(\leq |d|+|e|+|d|+|e|\leq 1+1+1+1=4(**)\)

Từ \((*);(**)\Rightarrow a^2+b^2+c^2+d^2+e^2\leq 4\) hay max của biểu thức bằng $4$

Dấu "=" xảy ra khi \((a,b,c,d,e)=(1,1,0,-1,-1)\) và hoán vị.

Bình luận (0)
NT
27 tháng 12 2018 lúc 18:46

Nguyễn Việt Lâm Uyen Vuuyen Akai Haruma

Bình luận (0)

Các câu hỏi tương tự
NS
Xem chi tiết
NS
Xem chi tiết
NS
Xem chi tiết
LV
Xem chi tiết
NS
Xem chi tiết
DM
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết
NH
Xem chi tiết