Tứ giác

H24

Cho ABCD là hình bình hành. Lấy E và F trên AB và CD sao cho AE = FC.
a) Chứng minh AECF là hình bình hành.
b) Chứng minh BE = FD.
c) Chứng minh DEBF là hình bình hành.
d) Chứng minh AC; BD và EF đồng quy.

NM
11 tháng 10 2021 lúc 16:07

\(a,\left\{{}\begin{matrix}AE=FC\\AE//FC\left(AB//CD\right)\end{matrix}\right.\Rightarrow AECF\) là hbh

\(b,AE=CF\left(gt\right);AB=CD\left(hbh.ABCD\right)\\ \Rightarrow AB-AE=CD-CF\\ \Rightarrow BE=FD\)

\(c,\left\{{}\begin{matrix}BE=FD\left(cm.trên\right)\\BE//FD\left(AB//CD\right)\end{matrix}\right.\Rightarrow DEBF\) là hbh

\(d,\) Gọi M là giao AC và BD

Mà ABCD là hbh nên M là trung điểm AC,BD

Mà DEBF là hbh, M là trung điểm BD nên cũng là trung điểm EF

Do đó AC,BD,EF đồng quy tại M

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
NM
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết