Violympic toán 9

VK

Cho a+b+c=1

\(\frac{a-bc}{a+bc}+\frac{b-ca}{b+ca}+\frac{c-ab}{c+ab}\le\frac{3}{2}\)

RD
23 tháng 3 2019 lúc 8:18

Mình nghĩ đề nên cho a,b,c dương nếu không thì từ từ mình suy nghĩ

Đặt \(P=\frac{a-bc}{a+bc}+\frac{b-ca}{b+ca}+\frac{c-ab}{c+ab}\)

Ta có:\(\frac{a-bc}{a+bc}=\frac{a-bc}{a\left(a+b+c\right)+bc}=\frac{a-bc}{\left(a+b\right)\left(a+c\right)}=\frac{\left(a-bc\right)\left(b+c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=\frac{\left(a-bc\right)\left(1-a\right)}{\left(1-a\right)\left(1-b\right)\left(1-c\right)}\)

\(=\frac{a-a^2-bc+abc}{\left(1-a\right)\left(1-b\right)\left(1-c\right)}=\frac{a-a^2-bc+abc}{1-a-b-c+ab+bc+ca-abc}=\frac{a-a^2-bc+abc}{ab+bc+ca-abc}\)

\(\Rightarrow P=\frac{a+b+c-a^2-b^2-c^2-ab-bc-ca+3abc}{ab+bc+ca-abc}\)

\(P=\frac{1-\left(a+b+c\right)^2+ab+bc+ca+3abc}{ab+bc+ca-abc}\)

\(P=\frac{ab+bc+ca+3abc}{ab+bc+ca-abc}=1+\frac{4abc}{ab+bc+ca-abc}\)

Cần cm:\(\frac{4abc}{ab+bc+ca-abc}\le\frac{1}{2}\)

\(\Leftrightarrow\left(ab+bc+ca\right)\left(a+b+c\right)\ge9abc\)(đúng theo AM-GM)

"="<=>a=b=c=1/3

Bình luận (3)

Các câu hỏi tương tự
BL
Xem chi tiết
BL
Xem chi tiết
VH
Xem chi tiết
TQ
Xem chi tiết
AJ
Xem chi tiết
NT
Xem chi tiết
LD
Xem chi tiết
AJ
Xem chi tiết
VH
Xem chi tiết