Violympic toán 8

NT

Cho abc=1. CMR \(\dfrac{a}{ab}+a+1+\dfrac{b}{bc}+b+1+\dfrac{c}{ac}+c+1=1\)

NL
16 tháng 2 2019 lúc 17:50

Chắc bạn viết nhầm đề, cho \(a=b=c=1\) đâu có đúng

Sửa lại đề: cho \(abc=1\) chứng minh \(\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}=1\)

Ta có

\(\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}=\dfrac{a}{ab+a+1}+\dfrac{ab}{abc+ab+a}+\dfrac{c}{ac+c+abc}\)

\(=\dfrac{a}{ab+a+1}+\dfrac{ab}{1+ab+a}+\dfrac{c}{c\left(a+1+ab\right)}\)

\(=\dfrac{a}{ab+a+1}+\dfrac{ab}{ab+a+1}+\dfrac{1}{ab+a+1}\)

\(=\dfrac{a+ab+1}{ab+a+1}=1\) (đpcm)

Bình luận (0)
NT
16 tháng 2 2019 lúc 18:11

Hỏi đáp Toán

Đề bạn Lâm đúng đấy!

Bình luận (0)

Các câu hỏi tương tự
KD
Xem chi tiết
BT
Xem chi tiết
PA
Xem chi tiết
BB
Xem chi tiết
TA
Xem chi tiết
BB
Xem chi tiết
NA
Xem chi tiết
HC
Xem chi tiết
TO
Xem chi tiết