Ta có:
a + b + c = 0 => a = -b - c; <=> a2 = (b + c)2 = b2 + 2bc + c2
<=> a2 - b2 - c2 = 2bc
Tương tự có: b2 - c2 - a2 = 2ac; c2 - a2 - b2 = 2ab
=> \(A=\frac{a^2}{a^2-b^2-c^2}+\frac{b^2}{b^2-c^2-a^2}+\frac{c^2}{c^2-a^2-b^2}\)
<=> \(A=\frac{a^2}{2bc}+\frac{b^2}{2ac}+\frac{c^2}{2ab}\)
<=> \(A=\frac{a^3+b^3+c^3}{2abc}\)
<=> \(A=\frac{\left(a+b+c\right)^3-3\left(a+b\right)\left(b+c\right)\left(a+c\right)}{2abc}\)
<=> \(A=\frac{0+3abc}{2abc}=\frac{3}{2}\)