Tứ giác

MT

Cho ∆ ABC vuông tại A, cho biết AB=15cm, AC=20cm. Kẻ đường cao AH của ∆ ABC

a) Chứng minh: ∆ABC đồng dạng ∆CAB và suy ra AB2=BH.BC

b) tính độ dài các đoạn thẳng BH và CH

c) kẻ HM vuông góc AB và HN vuông góc AC. Chứng minh: AM.AB= AN.AC

d) chứng minh: ∆AMN đồng dạng vs ∆ACB

NV
17 tháng 6 2018 lúc 12:23

a) Xét \(\Delta ABC,\Delta CAH\) có :

\(\left\{{}\begin{matrix}\widehat{C}:Chung\\\widehat{BAC}=\widehat{AHC}=90^o\end{matrix}\right.\)

=> \(\Delta ABC\sim\Delta CAH\left(g.g\right)\)

Xét \(\Delta ABC,\Delta HBA\) có :

\(\left\{{}\begin{matrix}\widehat{B}:Chung\\\widehat{BAC}=\widehat{BHA}=90^o\end{matrix}\right.\)

=> \(\Delta ABC\sim\Delta HBA\left(g.g\right)\)

=> \(\dfrac{BH}{AB}=\dfrac{AB}{BC}\)

=> \(AB^2=BH.BC\)

b) Ta có: \(AB^2=BH.BC=>AB^2=BH.\sqrt{AB^2+AC^2}\)

=> \(15^2=BH.\sqrt{15^2+20^2}=>BH=\dfrac{15^2}{25}=9\left(cm\right)\)

Từ \(\Delta ABC\sim\Delta CAH\left(g.g\right)\) ta có :

\(\dfrac{AB}{BC}=\dfrac{HC}{AC}=>HC=\dfrac{AB.AC}{BC}=12\left(cm\right)\)

c) Xét \(\Delta MAH,\Delta HAB\) có :

\(\left\{{}\begin{matrix}\widehat{A:}chung\\\widehat{AMH}=\widehat{AHB}=90^o\end{matrix}\right.\)

=> \(\Delta MAH\sim\Delta HAB\left(g.g\right)\)

=> \(\dfrac{MA}{HA}=\dfrac{AH}{AB}=>AH^2=MA.AB\) (1)

Xét \(\Delta NAH,\Delta HAC\) có :

\(\left\{{}\begin{matrix}\widehat{A}:Chung\\\widehat{ANH}=\widehat{AHC}=90^o\end{matrix}\right.\)

=> \(\Delta NAH\sim\Delta HAC\left(g.g\right)\)

=> \(\dfrac{NA}{AH}=\dfrac{AH}{AC}=>AH^2=NA.AC\) (2)

Từ (1) và (2) => \(AM.AB=AN.AC\left(=AH^2\right)\)

d) Xét \(\Delta AMN,\Delta ACB\) có :

\(\dfrac{AM}{AN}=\dfrac{AB}{AC}\)

\(\widehat{A}:Chung\)

=> \(\Delta AMN\sim\Delta ACB\left(g.g\right)\)

Bình luận (0)

Các câu hỏi tương tự
NK
Xem chi tiết
H24
Xem chi tiết
CC
Xem chi tiết
KL
Xem chi tiết
HM
Xem chi tiết
H24
Xem chi tiết
LM
Xem chi tiết
CD
Xem chi tiết
H24
Xem chi tiết