Violympic toán 9

BA

Cho a.b,c là số hữu tỉ t/m abc=1 và \(\dfrac{a}{b^2}+\dfrac{b}{c^2}+\dfrac{c}{a^2}=\dfrac{a^2}{c}+\dfrac{b^2}{a}+\dfrac{c^2}{b}\).

C/m ít nhẩ một trong 3 số a,b,c là bình phương của một số hữu tỉ.

HP
18 tháng 12 2020 lúc 20:57

Đặt \(\left\{{}\begin{matrix}\dfrac{a}{b^2}=x\\\dfrac{b}{c^2}=y\\\dfrac{c}{a^2}=z\end{matrix}\right.\Rightarrow xyz=1;x+y+z=\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\)

Ta có \(x+y+z=\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\)

\(\Leftrightarrow x+y+z=xy+yz+zx\)

\(\Leftrightarrow xyz-1+x+y+z-xy-yz-zx=0\)

\(\Leftrightarrow\left(x-1\right)\left(y-1\right)\left(z-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(y-1\right)\left(z-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\y=1\\z=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\dfrac{a}{b^2}=1\\\dfrac{b}{c^2}=1\\\dfrac{c}{a^2}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=b^2\\b=c^2\\c=a^2\end{matrix}\right.\left(đpcm\right)\)

Bình luận (0)

Các câu hỏi tương tự
TB
Xem chi tiết
GH
Xem chi tiết
BB
Xem chi tiết
QL
Xem chi tiết
TA
Xem chi tiết
NT
Xem chi tiết
NH
Xem chi tiết
HT
Xem chi tiết
H24
Xem chi tiết