Violympic toán 9

AG

Cho a,b,c là độ dài 3 cạnh của tam giác.

a, CMR:\(ab\left(a+b-2c\right)+bc\left(b+c-2a\right)+ac\left(a+c-2b\right)\ge0\)

b, CMR: \(\dfrac{a}{b+c-a}+\dfrac{b}{a+c-b}+\dfrac{c}{a+b-c}\ge3\)

AH
5 tháng 1 2018 lúc 0:37

Lời giải:

a)

Theo bất đẳng thức AM-GM ta có:

\(ab(a+b)+bc(b+c)+ac(c+a)\)

\(=a^2b+ab^2+b^2c+bc^2+c^2a+ca^2\geq 6\sqrt[6]{a^2b.ab^2.b^2c.bc^2.c^2a.ca^2}\)

\(\Leftrightarrow ab(a+b)+bc(b+c)+ca(c+a)\geq 6abc\)

\(\Leftrightarrow ab(a+b-2c)+bc(b+c-2a)+ca(c+a-2b)\geq 0\)

Ta có đpcm.

Dấu bằng xảy ra khi \(a=b=c\)

b) Áp dụng BĐT Cauchy-Schwarz:

\(\text{VT}=\frac{a^2}{ab+ac-a^2}+\frac{b^2}{ab+bc-b^2}+\frac{c^2}{ca+cb-c^2}\)

\(\geq \frac{(a+b+c)^2}{ab+ac-a^2+ab+bc-b^2+ca+cb-c^2}\)

\(\Leftrightarrow \text{VT}\geq \frac{(a+b+c)^2}{2(ab+bc+ac)-(a^2+b^2+c^2)}\)

Vì $a,b,c$ là độ dài ba cạnh tam giác nên

\(a(b+c-a)+b(a+c-b)+c(a+b-c)>0\)

hay \(2(ab+bc+ac)-(a^2+b^2+c^2)>0\)

Mặt khác theo BĐT AM-GM ta có:

\(a^2+b^2+c^2\geq ab+bc+ac\Rightarrow 2(ab+bc+ac)-(a^2+b^2+c^2)\leq ab+bc+ac\)

\(\Rightarrow \text{VT}\geq \frac{(a+b+c)^2}{ab+bc+ac}=\frac{a^2+b^2+c^2+2(ab+bc+ac)}{ab+bc+ac}\geq \frac{3(ab+bc+ac)}{ab+bc+ac}=3\)

Vậy ta có đpcm.

Dấu bằng xảy ra khi \(a=b=c\)

Bình luận (0)

Các câu hỏi tương tự
DF
Xem chi tiết
CT
Xem chi tiết
NY
Xem chi tiết
H24
Xem chi tiết
MY
Xem chi tiết
VD
Xem chi tiết
BB
Xem chi tiết
YM
Xem chi tiết
H24
Xem chi tiết