Chương 1: HÀM SỐ LƯỢNG GIÁC. PHƯƠNG TRÌNH LƯỢNG GIÁC

NV

Cho a,b,c là các số thực thuộc đoạn  [1,2 ].Chứng minh rằng:

\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\le10\)

HP
28 tháng 8 2021 lúc 10:50

Không mất tính tổng quát, giả sử \(a\ge b\ge c\).

Khi đó: \(\left(a-b\right)\left(b-c\right)\ge0\)

\(\Leftrightarrow ab+bc\ge ac+b^2\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a}{c}+1\ge\dfrac{a}{b}+\dfrac{b}{c}\\\dfrac{c}{a}+1\ge\dfrac{c}{b}+\dfrac{b}{a}\end{matrix}\right.\)

\(\Rightarrow\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}+\dfrac{b}{a}+\dfrac{c}{b}+\dfrac{a}{c}\le2+2\left(\dfrac{a}{c}+\dfrac{c}{a}\right)\)

Vì \(1\le c\le a\le2\Rightarrow\left(\dfrac{a}{c}-2\right)\left(\dfrac{2a}{c}-1\right)\le0\)

\(\Leftrightarrow\dfrac{a}{c}+\dfrac{c}{a}\le\dfrac{5}{2}\)

\(\Rightarrow\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}+\dfrac{b}{a}+\dfrac{c}{b}+\dfrac{a}{c}\le7\)

\(\Leftrightarrow\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\le10\)

Đẳng thức xảy ra khi \(a=b=2;c=1\) và các hoán vị.

Bình luận (0)

Các câu hỏi tương tự
NV
Xem chi tiết
NV
Xem chi tiết
NV
Xem chi tiết
MT
Xem chi tiết
NV
Xem chi tiết
NV
Xem chi tiết
MT
Xem chi tiết
MT
Xem chi tiết
KH
Xem chi tiết