b) Ta có:
\(\dfrac{1^2}{a}+\dfrac{1^2}{b}+\dfrac{1^2}{c}+\dfrac{1^2}{d}\ge\dfrac{\left(1+1+1+1\right)^2}{a+b+c+d}=\dfrac{16}{a+b+c+d}\)
Dấu = xảy rakhi a=b=c=d
CM : bn tự chứng minh
Áp dụng:
Ta có:
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{4}{c}+\dfrac{16}{d}=\dfrac{1^2}{a}+\dfrac{1^2}{b}+\dfrac{2^2}{c}+\dfrac{4^2}{d}\ge\dfrac{\left(1+1+2+4\right)^2}{a+b+c+d}=\dfrac{64}{a+b+c+d}\)
Dấu = xảy ra khi \(a=b=\dfrac{c}{2}=\dfrac{d}{4}\)