Violympic toán 8

TS

Cho a;b;c là các số thực dương sao cho \(abc\ge1\)

CMR: \(\dfrac{a^5-a^2}{a^5+b^2+c^2}+\dfrac{b^5-b^2}{b^5+c^2+a^2}+\dfrac{c^5-c^2}{c^5+a^2+b^2}\ge0\)

Mong Akai Haruma ; Ribi Nkok Ngok ; lê thị hương giang ; Vũ Tiền Châu ; Ace Legona ; Hung nguyen giúp mình với ạ!

Mình xin cảm ơn trước!

LF
8 tháng 12 2017 lúc 22:41

\(\dfrac{a^5-a^2}{a^5+b^2+c^2}+\dfrac{b^5-b^2}{b^5+c^2+a^2}+\dfrac{c^5-c^2}{c^5+a^2+b^2}\ge0\)

\(\Leftrightarrow1-\dfrac{a^2+b^2+c^2}{a^5+b^2+c^2}+1-\dfrac{a^2+b^2+c^2}{b^5+c^2+a^2}+1-\dfrac{a^2+b^2+c^2}{c^5+a^2+b^2}\ge0\)

\(\Leftrightarrow\dfrac{1}{a^5+b^2+c^2}+\dfrac{1}{b^5+c^2+a^2}+\dfrac{1}{c^5+a^2+b^2}\le\dfrac{3}{a^2+b^2+c^2}\)

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\left(a^5+b^2+c^2\right)\left(\dfrac{1}{a}+b^2+c^2\right)\ge\left(a^2+b^2+c^2\right)^2\)

\(\Rightarrow\dfrac{1}{a^5+b^2+c^2}\le\dfrac{\dfrac{1}{a}+b^2+c^2}{\left(a^2+b^2+c^2\right)^2}\). Tương tự cho 2 BĐT còn lại rồi cộng theo vế:

\(VT\le\dfrac{\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+2\left(a^2+b^2+c^2\right)}{\left(a^2+b^2+c^2\right)^2}\)

Cần cm \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+2\left(a^2+b^2+c^2\right)\le3\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\le a^2+b^2+c^2\Leftrightarrow\dfrac{ab+bc+ca}{abc}\le a^2+b^2+c^2\)

\(\Leftrightarrow ab+bc+ca\le a^2+b^2+c^2\) *ĐÚNG*

Bình luận (2)

Các câu hỏi tương tự
TS
Xem chi tiết
TS
Xem chi tiết
TS
Xem chi tiết
TS
Xem chi tiết
TS
Xem chi tiết
TS
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
TS
Xem chi tiết