Violympic toán 9

PN

Cho a,b,c là các số thực dương. CMR : \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{2}{a+b}+\dfrac{2}{b+c}+\dfrac{2}{a+c}\)

MS
15 tháng 12 2018 lúc 20:13

Áp dụng bđt Cauchy-Schwarz:

\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{\left(1+1\right)^2}{a+b}=\dfrac{4}{a+b}\)

\(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{\left(1+1\right)^2}{b+c}=\dfrac{4}{b+c}\)

\(\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{\left(1+1\right)^2}{c+a}=\dfrac{4}{c+a}\)

Cộng theo vế và rút gọn suy ra đpcm

\("="\Leftrightarrow a=b=c\)

Bình luận (0)

Các câu hỏi tương tự
TQ
Xem chi tiết
H24
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
LT
Xem chi tiết
BG
Xem chi tiết
NH
Xem chi tiết
H24
Xem chi tiết
NN
Xem chi tiết