Violympic toán 9

LM

Cho a,b,c là các số dương. Chứng minh bất đẳng thức:

\(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\ge\frac{a+b+c}{2}\)

TP
1 tháng 4 2020 lúc 8:59

Áp dụng BĐT Cauchy-Schwarz:

\(VT\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\)

Dấu "=" xảy ra <=> \(a=b=c\)

Bình luận (0)
 Khách vãng lai đã xóa
TL
1 tháng 4 2020 lúc 10:35

Cách 2

Áp dụng bđt AM-GM ta có

\(\frac{a^2}{b+c}+\frac{b+c}{4}\ge2\sqrt{\frac{a^2\left(b+c\right)}{4\left(b+c\right)}}=a\)

Tương tự \(\frac{b^2}{a+c}+\frac{a+c}{4}\ge b\),\(\frac{c^2}{a+b}+\frac{a+b}{4}\ge c\)

Cộng từng vế các bđt trên => đpcm

Dấu "=" xảy ra khi a=b=c

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
AA
Xem chi tiết
TH
Xem chi tiết
NT
Xem chi tiết
AJ
Xem chi tiết
NY
Xem chi tiết
ND
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
NH
Xem chi tiết