Violympic toán 9

AS

Cho a,b,c là 3 số dương TM : \(\dfrac{1}{a+b+1}+\dfrac{1}{b+c+1}+\dfrac{1}{a+c+1}=2\)

TimfGTLN của tích (a+b)(b+c)(a+c)

H24
10 tháng 10 2018 lúc 12:12

Với a, b, c là các số dương.

Ta có: \(\dfrac{1}{a+b+1}+\dfrac{1}{b+c+1}+\dfrac{1}{c+a+1}=2\)

\(\Rightarrow\) \(\dfrac{1}{a+b+1}=\left(1-\dfrac{1}{b+c+1}\right)+\left(1-\dfrac{1}{c+a+1}\right) \)

\(=\dfrac{b+c}{b+c+1}+\dfrac{c+a}{c+a+1}\)

\(\ge2\sqrt{\dfrac{\left(b+c\right)\left(c+a\right)}{\left(b+c+1\right)\left(c+a+1\right)}}>0\) (Bất đẳng thức Cô-si)

Tương tự: \(\dfrac{1}{b+c+1}\ge2\sqrt{\dfrac{\left(c+a\right)\left(a+b\right)}{\left(c+a+1\right)\left(a+b+1\right)}}>0\)

\(\dfrac{1}{c+a+1}\ge2\sqrt{\dfrac{\left(a+b\right)\left(b+c\right)}{\left(a+b+1\right)\left(b+c+1\right)}}>0\)

Nhân vế theo vế ba bất đẳng thức trên, ta được:

\(\dfrac{1}{\left(a+b+1\right)\left(b+c+1\right)\left(c+a+1\right)}\) \(\ge\dfrac{8\left(a+b\right)\left(b+c\right)\left(c+a\right)}{\left(a+b+1\right)\left(b+c+1\right)\left(c+a+1\right)}\)

\(\Rightarrow\) \(1\ge8\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

\(\Rightarrow\) \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\le\dfrac{1}{8}\)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c=\dfrac{1}{4}\).

Vậy giá trị lớn nhất của tích \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\) bằng \(\dfrac{1}{8}\) khi và chỉ khi \(a=b=c=\dfrac{1}{4}\).

Bình luận (0)

Các câu hỏi tương tự
BB
Xem chi tiết
NH
Xem chi tiết
TN
Xem chi tiết
PP
Xem chi tiết
DF
Xem chi tiết
MD
Xem chi tiết
MS
Xem chi tiết
NC
Xem chi tiết
HC
Xem chi tiết