Violympic toán 8

BT

cho a,b,c là 3 cạnh của tam giác.Chứnh minh rằng:

\(A=\dfrac{a}{b+c-a}+\dfrac{b}{a+c-b}+\dfrac{c}{a+b-a}\ge3\)

HH
2 tháng 4 2018 lúc 22:40

đặt b+c-a=x

a+c-b=y

a+b-c=z

ta có x+y=2c

x+z=2b

z+y=2a

ta lại có

2A=\(\dfrac{2a}{x}+\dfrac{2b}{y}+\dfrac{2c}{z}\)

2A=\(\dfrac{z+y}{x}+\dfrac{x+z}{y}+\dfrac{x+y}{z}\)

2A=\(\dfrac{z}{x}+\dfrac{y}{x}+\dfrac{x}{y}+\dfrac{z}{y}+\dfrac{x}{z}+\dfrac{y}{z}\)

2A=\(\left(\dfrac{z}{x}+\dfrac{x}{z}\right)+\left(\dfrac{y}{x}+\dfrac{x}{y}\right)+\left(\dfrac{z}{y}+\dfrac{y}{z}\right)\ge2+2+2=6\)

=>2A= \(\dfrac{2a}{x}+\dfrac{2b}{y}+\dfrac{2c}{z}\ge6\)

<=>A≥3 (chia cả 2 vế cho 2 ) (đpcm)

Bình luận (0)
H24
3 tháng 4 2018 lúc 19:47

Xin góp thêm cách nữa:

Am-Gm thẳng cho 3 số:

\(\dfrac{a}{b+c-a}+\dfrac{b}{c+a-b}+\dfrac{c}{a+b-c}\ge3\sqrt[3]{\dfrac{abc}{\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)}}\)

việc còn lại chỉ việc chứng minh :

\(abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)

Áp dụng BĐT Am-Gm ta có:

\(\left(a+b-c\right)\left(b+c-a\right)\le\dfrac{1}{4}\left(a+b-c+b+c-a\right)=b^2\)

\(\left(b+c-a\right)\left(c+a-b\right)\le c^2\)

\(\left(c+a-b\right)\left(a+b-c\right)\le a^2\)

Nhân lại ta có đpcm.Dấu = xảy ra khi a=b=c

Bình luận (0)

Các câu hỏi tương tự
BB
Xem chi tiết
TS
Xem chi tiết
TA
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
TH
Xem chi tiết
BB
Xem chi tiết
HN
Xem chi tiết