Bài 2: Tính chất cơ bản của phân thức

LL

Cho a,b,c khác nhau đôi một và \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\) .Rút gọn các biểu thức sau"

\(M=\dfrac{1}{a^2+2bc}+\dfrac{1}{b^2+2ac}+\dfrac{1}{c^2+2ab}\)

NP
27 tháng 11 2017 lúc 20:43

Ta có : 1/M=a2+2bc+b2+2ac+c2+2ab

=(a+b+c)2 ➝ M=1/(a+b+c)2

mik nghĩ là thế

Bình luận (0)
ND
11 tháng 12 2017 lúc 21:43

Có:

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\)

\(\Leftrightarrow\dfrac{ab+bc+ac}{abc}=0\)

\(\Leftrightarrow ab+bc+ac=0\)

\(1\Leftrightarrow a^2+2bc=a^2+bc-ab-ac\)

\(\Leftrightarrow a^2+2bc=a\left(a-b\right)-c\left(a-b\right)\)

\(\Leftrightarrow a^2+2bc=\left(a-b\right)\left(b-c\right)\)

\(2\Leftrightarrow b^2+2ac=b^2+ac-ab-bc\)

\(\Leftrightarrow b^2+2ac=b\left(b-c\right)-a\left(b-c\right)\)

\(\Leftrightarrow b^2+2ac=\left(b-c\right)\left(b-a\right)\)

\(3.c^2+2ab=c^2+ab-bc-ac\)

\(\Leftrightarrow c^2+2ab=c\left(c-b\right)-a\left(c-b\right)\)

\(\Leftrightarrow c^2+2ab=\left(c-a\right)\left(c-b\right)\)

\(\Rightarrow M=\dfrac{1}{\left(a-b\right)\left(a-c\right)}+\dfrac{1}{\left(b-a\right)\left(b-c\right)}+\dfrac{1}{\left(c-a\right)\left(c-b\right)}\)

\(\Rightarrow M=\dfrac{1}{\left(a-b\right)\left(a-c\right)}-\dfrac{1}{\left(a-b\right)\left(b-c\right)}+\dfrac{1}{\left(a-c\right)\left(b-c\right)}\)

\(\Rightarrow M=\dfrac{b-c-a+c+a-b}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)

\(\Rightarrow M=0\)

Bình luận (0)

Các câu hỏi tương tự
IM
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
TO
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
HH
Xem chi tiết
TH
Xem chi tiết