Cho 0<a, b, c<1; ab+bc+ca=1. Tìm GTNN của \(P=\dfrac{a^2.\left(1-2b\right)}{b}+\dfrac{b^2.\left(1-2c\right)}{c}+\dfrac{c^2.\left(1-2a\right)}{a}\)
Cho a,b,c thỏa mãn ab+ac+bc=a+b+c+abc ; 3+ab ≠ 2a+b; 3+bc ≠ 2b+c;3+ac ≠2c+a.
C/M: \(\dfrac{1}{3+ab-\left(2a+b\right)}+\dfrac{1}{3+bc-\left(2b+c\right)}+\dfrac{1}{3+ac-\left(2c+a\right)}=1\)
Cho a , b , c là các số thực dương thỏa mãn : \(7\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)=6\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)+2015\)
Tìm GTLN của biểu thức \(P=\dfrac{1}{\sqrt{3\left(2a^2+b^2\right)}}+\dfrac{1}{\sqrt{3\left(2b^2+c^2\right)}}+\dfrac{1}{\sqrt{3\left(2c^2+a^2\right)}}\)
cho \(7\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)=6\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}\right)+2017\)
tìm max \(\dfrac{1}{\sqrt{3\left(2a^2+b^2\right)}}+\dfrac{1}{\sqrt{3\left(2b^2+c^2\right)}}+\dfrac{1}{\sqrt{3\left(2c^2+a^2\right)}}\)
Cho a,b,c>0 thỏa mãn : \(ab+bc+ca=0\)
C/m: \(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\ge3+\sqrt{\dfrac{\left(a+b\right)\left(a+c\right)}{a^2}}+\sqrt{\dfrac{\left(b+c\right)\left(b+a\right)}{b^2}}+\sqrt{\dfrac{\left(c+a\right)\left(c+b\right)}{c^2}}\)
Cho a,b,c >0 và \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=3\) Tìm giá trị lớn nhất của:
\(P=\dfrac{1}{\left(2a+b+c\right)^2}+\dfrac{1}{\left(2b+c+a\right)^2}+\dfrac{1}{\left(2c+a+b\right)^2}\)
cho a,b,c là các số thực dương. Chứng minh rằng :
\(\dfrac{b^2c}{a^3\left(b+c\right)}+\dfrac{c^2a}{b^3\left(c+a\right)}+\dfrac{a^2b}{c^3\left(a+b\right)}\ge\dfrac{1}{2}\left(a+b+c\right)\)
cho a,b,c là các số thực dương thay đổi bất kì
cm:
\(\dfrac{\left(2a+b+c\right)^2}{2a^2+\left(b+c\right)^2}+\dfrac{\left(a+2b+c\right)^2}{2b^2+\left(c+a\right)^2}+\dfrac{\left(a+b+2c\right)^2}{2c^2+\left(a+b\right)^2}\le8\)
Cho a,b,c là các số thực dương thỏa mãn a+b+c=3. Tìm giá trị nhỏ nhất của biểu thức:
\(P=\dfrac{1}{a\left(b^2+bc+c^2\right)}+\dfrac{1}{b\left(c^2+ca+a^2\right)}+\dfrac{1}{c\left(a^2+ab+b^2\right)}+\dfrac{abc}{ab+bc+ca}\)