Cho a, b, c là 3 số dương thỏa mãn ab + bc + ca = 3abc. Chứng minh:
\(\dfrac{a}{a^2+bc}+\dfrac{b}{b^2+ca}+\dfrac{c}{c^2+ab}\le\dfrac{3}{2}\)
Cho 3 số dương a, b, c thỏa mãn: ab+bc+ca=3. Chứng minh: \(\dfrac{1}{a^2+1}+\dfrac{1}{b^2+1}+\dfrac{1}{c^2+1}\ge\dfrac{3}{2}\)
Cho các số dương \(a,b,c\) thoả mãn \(a+b+c=3\). Chứng minh rằng: \(\dfrac{a^2+bc}{b+ca}+\dfrac{b^2+ca}{c+ab}+\dfrac{c^2+ab}{a+bc}\ge3\)
Cho a,b,c dương thỏa mãn ab + bc + ca = 3. Chứng minh:
\(\frac{1}{a^2+2}+\frac{1}{b^2+2}+\frac{1}{c^2+2}\le1\)
cho ba số thực dương a, b, c thỏa mãn ab + bc + ca = 3. Chứng minh rằng: \(\dfrac{a^3}{b^2+3}+\dfrac{b^3}{c^2+3}+\dfrac{c^3}{a^3+3}\ge\dfrac{3}{4}\) help me!!!!
Cho a, b, c là các số dương thỏa mãn a+b+c+2=abc. Chứng minh: \(\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\le\frac{3}{2}\)
Cho các số dương a, b, c thỏa mãn \(a+b+c\le3\) . Chứng minh rằng : \(\frac{1}{a^2+b^2+c^2}+\frac{2018}{ab+bc+ca}\ge673\)
cho a,b,c >0 thỏa mãn \(a^2+b^2+c^2=3\) chứng minh rằng \(\dfrac{a}{ab+3}+\dfrac{b}{bc+3}+\dfrac{c}{ca+3}\le\dfrac{3}{4}\)
Cho các số dương a,b,c thỏa mãn a+b+c=1.
Chứng minh: \(\sqrt{2a^2+ab+2b^2}+\sqrt{2b^2+bc+2c^2}+\sqrt{2c^2+ca+2a^2}\ge\sqrt{5}\)