\(\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}\)
\(=\dfrac{a}{ab+a+1}+\dfrac{b}{\dfrac{b}{ab}+b+1}+\dfrac{\dfrac{1}{ab}}{\dfrac{a}{ab}+\dfrac{1}{ab}+1}\)
\(=\dfrac{a}{ab+a+1}+\dfrac{ab}{1+ba+a}+\dfrac{1}{a+1+ab}=\dfrac{ab+a+1}{ab+a+1}=1\)
\(\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}\)
\(=\dfrac{a}{ab+a+1}+\dfrac{b}{\dfrac{b}{ab}+b+1}+\dfrac{\dfrac{1}{ab}}{\dfrac{a}{ab}+\dfrac{1}{ab}+1}\)
\(=\dfrac{a}{ab+a+1}+\dfrac{ab}{1+ba+a}+\dfrac{1}{a+1+ab}=\dfrac{ab+a+1}{ab+a+1}=1\)
\(A=\dfrac{4bc-a^2}{bc+2a^2}\\ B=\dfrac{4ca-b^2}{ca+2b^2}\\ C=\dfrac{4ab-c^2}{ab+2c^2}\\ \)
CMR: nếu a+b+c=0 thì A.B.C=1
Cho tan giác ABC có: \(\widehat{C}=2\widehat{B}=4\widehat{A}\). CMR: \(\dfrac{1}{AB}+\dfrac{1}{AC}=\dfrac{1}{BC}\)
Cho tam giác ABC có \(\widehat{C}=2\widehat{B}=4\widehat{A}\). CMR: \(\dfrac{1}{AB}+\dfrac{1}{AC}=\dfrac{1}{BC}\)
Cho ab,c thuộc R, CM:
\(\dfrac{a}{bc}+\dfrac{b}{ca}+\dfrac{c}{ab}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\left(vớia,b,c>0\right)\)
Cho \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\). Tính giá trị biểu thức:
P\(=\dfrac{ab}{c^2}+\dfrac{bc}{a^2}+\dfrac{ca}{b^2}\)
Cho a,b,c >0 và a2 + b2 + c2 = 1 . CMR
\(\dfrac{1}{1-ab}+\dfrac{1}{1-bc}+\dfrac{1}{1-ca}\le\dfrac{9}{2}\)
Cho \(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}\).Tính P =\(\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{c}{b}\right)\left(1+\dfrac{a}{c}\right)\)
cho \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0.Tính\)giá trị của biểu thức M=\(\dfrac{b+c}{a}+\dfrac{c+a}{b}+\dfrac{a+b}{c}\)
a) \(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=0\) (1) và \(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=2\) (2)
Tính giá trị của biểu thức A\(=\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}\)
b) Biết a+b+c = 0
Tính: B\(=\dfrac{ab}{a^2+b^2-c^2}+\dfrac{bc}{b^2+c^2-a^2}+\dfrac{ac}{c^2+a^2-b^2}\)