Violympic toán 9

AR

Cho a;b;c > 0 ; ab+bc+ca= 3 . CMR : \(\frac{1}{a^2+2}+\frac{1}{b^2+2}+\frac{1}{c^2+2}\)≤1 ( Chú ý sử dụng bđt Bunihacopxi nhé mấy bạn !! )

MS
24 tháng 5 2019 lúc 11:30

Ta có:

\(\frac{1}{a^2+2}+\frac{1}{b^2+2}+\frac{1}{c^2+2}\le1\)

\(\Leftrightarrow\frac{2}{a^2+2}+\frac{2}{b^2+2}+\frac{2}{c^2+2}\le2\)

\(\Leftrightarrow1-\frac{2}{a^2+2}+1-\frac{2}{b^2+2}+1-\frac{2}{c^2+2}\ge1\)

\(\Leftrightarrow\frac{a^2}{a^2+2}+\frac{b^2}{b^2+2}+\frac{c^2}{c^2+2}\ge1\)

Ta cần cm bđt trên đúng.Thật vậy

\(\frac{a^2}{a^2+2}+\frac{b^2}{b^2+2}+\frac{c^2}{c^2+2}\ge\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+6}=\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+2\left(ab+bc+ac\right)}=1\)

\("="\Leftrightarrow a=b=c=1\)

Bình luận (0)

Các câu hỏi tương tự
TQ
Xem chi tiết
TQ
Xem chi tiết
BL
Xem chi tiết
BL
Xem chi tiết
BL
Xem chi tiết
H24
Xem chi tiết
BL
Xem chi tiết
BL
Xem chi tiết
AJ
Xem chi tiết