Violympic toán 8

DF

cho a,b>0 và \(a^2+b^2=a+b\). tìm GTNN của \(P=a^4+b^4+\dfrac{2020}{\left(a+b\right)^2}\)

AH
2 tháng 1 2021 lúc 16:19

Lời giải:

Áp dụng BĐT AM-GM: 

$(a^2+b^2)^2=(a+b)^2\leq 2(a^2+b^2)\Rightarrow a^2+b^2\leq 2$

Tiếp tục áp dụng BĐT AM-GM:

\(P=a^4+b^4+\frac{2020}{(a^2+b^2)^2}\geq \frac{(a^2+b^2)^2}{2}+\frac{2020}{(a^2+b^2)^2}\). Ta có:

\(\frac{(a^2+b^2)^2}{2}+\frac{8}{(a^2+b^2)^2}\geq 2\sqrt{\frac{(a^2+b^2)^2}{2}.\frac{8}{(a^2+b^2)^2}}=4\)

\(\frac{2012}{(a^2+b^2)^2}\geq \frac{2012}{2^2}=503\) do $a^2+b^2\leq 2$

Do đó: $P\geq \frac{(a^2+b^2)^2}{2}+\frac{2020}{(a^2+b^2)^2}\geq 4+503=507$

Vậy $P_{\min}=507$. Giá trị này đạt tại $a=b=1$

 

Bình luận (0)

Các câu hỏi tương tự
VT
Xem chi tiết
NK
Xem chi tiết
BB
Xem chi tiết
TZ
Xem chi tiết
SD
Xem chi tiết
BB
Xem chi tiết
KH
Xem chi tiết
PT
Xem chi tiết
H24
Xem chi tiết