Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Violympic toán 8

HV

Cho a,b>0 thỏa mãn \(a^2+b^2=2.\) Tìm Min của\(\frac{a^3}{2a+3b}+\frac{b^3}{3a+2b}\)

NL
3 tháng 6 2020 lúc 20:31

\(P=\frac{a^3}{2a+3b}+\frac{b^3}{3a+2b}=\frac{a^4}{2a^2+3ab}+\frac{b^4}{3ab+2b^2}\)

\(P\ge\frac{\left(a^2+b^2\right)^2}{2\left(a^2+b^2\right)+6ab}\ge\frac{\left(a^2+b^2\right)^2}{2\left(a^2+b^2\right)+3\left(a^2+b^2\right)}=\frac{a^2+b^2}{5}=\frac{2}{5}\)

Dấu "=" xảy ra khi \(a=b=1\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
Y
Xem chi tiết
H24
Xem chi tiết
NC
Xem chi tiết
TT
Xem chi tiết
NH
Xem chi tiết
PR
Xem chi tiết
H24
Xem chi tiết
TL
Xem chi tiết