Ta có: a<b
⇔3a<3b
hay 3a+2<3b+2(đpcm)
Ta có: a<b
⇔3a<3b
hay 3a+2<3b+2(đpcm)
bài 1 : cho a, b, c>0 thỏa mãn a2+b2+c2=3
chứng minh rằng \(\dfrac{1}{1+ab}+\dfrac{1}{1+bc}+\dfrac{1}{1+ac}>=\dfrac{3}{2}\)
bài 2 : cho a, b, c>0. chứng minh rằng
\(\dfrac{a}{a+2b+3c}+\dfrac{b}{b+2c+3a}+\dfrac{c}{c+2a+3b}>=\dfrac{1}{2}\)
bài 3 : cho a, b, c>0 thỏa mãn ab+bc+ac=abc
tìm GTLN của \(S=\dfrac{1}{3a+2b+c}+\dfrac{1}{3b+2c+a}+\dfrac{1}{3c+2a+b}\)
chứng minh rằng Nếu a>b thì 3a - 5 > 3b - 5
cho a>b chứng minh :
3a +15 > 3b+15
4a-2 > 4b-3
-5a+1 < -5b+2
làm hộ nha mới học nên mình chưa hiểu.............
Cho \(a,b\ge0\) và \(a^2+b^2=2\). Tìm: \(MaxP=a\sqrt{3b\left(a+2b\right)}+b\sqrt{3a\left(b+2a\right)}\)
Bài 1:Cho m < n.Chứng minh 2020+m+2019 < 2020n+2019
Bài 2:So sánh x và y nếu:25x - 10 ≥ 25y - 10
Bài 3:Cho 2a > 2b.Hãy so sánh 3a + 2020 và 3b + 2019
Cho a>b. Hãy so sánh
a) a+3 và b-2 ; b)-3a và -3b +1
Bài 2: Giải bất phương trình
6x+3(x+1) > 3x-(2x-6)
Giúp mình với ạ. Cần gấp ạ
cho a,b,c lon hon bang 0 va ab+bc+ca lon hon bang 3.c/m a4/b+3c +b4/c+3a +c4/a+3b
1/Cho (a2 - bc)( b- abc) = (b2 -ac)(a-abc)
a/ Chứng minh rằng: 1/a + 1/b + 1/c = a+b+c
b/ Chứng tỏ : a(b-c)(b+c-a)2 + c(a-b)(a+b-c)2 = b(a-c)(a+c-b)
2/ Với x là 1 số thực bất kỳ. Chứng minh rằng x-x2 +1: x2 -1 <1
3/ Cho các số x,y thỏa mãn : Chứng minh rằng x2 +y2 +(1+xy : x+y)2 >=2
Cho a . b >=1. Chứng minh: a^2 + b^2 >= a + b.