Ta có: a2 + b2 + c2 = 1
⇒ \(\left\{{}\begin{matrix}\left|a\right|\le1\\\left|b\right|\le1\\\left|c\right|\le1\end{matrix}\right.\)
Ta lại có:
a3 + b3 + c3 = a2 + b2 + c2
⇔ a2(1 - a) + b2(1 - b) + c2(1 - c) = 0
Vì \(\left\{{}\begin{matrix}1-a\ge0\\1-b\ge0\\1-c\ge0\end{matrix}\right.\)
⇒ a2(1 - a) + b2(1 - b) + c2(1 - c) ≥ 0
Dấu "=" xảy ra khi: (a,b,c) = (1;0)
⇒ A = 1